

University Politehnica of Bucharest

Pi-CoPS
Pipe Contamination Prevention System

Windows Embedded Student ChallengE
Final Report

Team Members

Professor Nicolae Ţăpuş Ph.D.
ntapus@cs.pub.ro

Ştefan Bucur
stefan.bucur@gmail.com

Vlad Ureche
vlad.ureche@gmail.com

Răzvan Tătăroiu
razvan784@gmail.com

Mihail-Alexandru Balan
mihai.balan@gmail.com

Team Mentor

mailto:ntapus@cs.pub.ro
mailto:stefan.bucur@gmail.com
mailto:vlad.ureche@gmail.com
mailto:razvan784@gmail.com
mailto:mihai.balan@gmail.com

Pipe Contamination Prevention System

1 Abstract
We live on a planet that is 75% covered with water and it would be apparently difficult to

imagine that the water shortage could be a problem. However, one must take into consideration
that less than 1% of Earth’s water is drinkable, and unfortunately the pollution of water sources
has become a serious concern–over 20000 waterbodies across the U.S. alone have reported
problems [3]. Organizations around the world are continuously trying to find improvements to
the existing water treatment and distribution systems. Millions of dollars are invested into
research and environmental education programs, and the recent technological innovations are
opening more ways to address this public threat.

Statistics [5] show, for example, that around 50 million Americans drink from water
supplies contaminated in unsafe concentrations with toxins. Even in the most advanced cities of
the world, deteriorating, out-of-date plumbing are sometimes causing the water to become
unhealthy to drink. In the recent geo-political context, we should not even exclude a potential
terrorist action which, by contaminating the water distribution system of a major metropolis,
would lead to an unprecedented disaster.

In this context, Pi-CoPS (Pipe Contamination Prevention System) is committed to
bringing a higher degree of security in every community that is concerned with the safety of its
tap drinking water, whose quality is vulnerable to accidental infiltrations or even malicious
actions.

Pi-CoPS is an automated system that relies on a multi-level sensor network connected to
the main water pipes in an urban area. As the sensors are acquiring data regarding various water
quality parameters, the system processes it in real time, and takes action to prevent the spreading
of contaminants to the population, while opening alternate paths to supply clean water, if
possible. Pi-CoPS can also provide authorities and the public with a valuable selection of
information, while maintaining fast and efficient network communication.

The entire network was designed with three main features in mind: fault tolerance,
responsiveness and scalability. Pi-CoPS’ innovative asset is its possibility to prevent the
contamination spreading by blocking or rerouting the water flow. Even in the case of the data
network failure, the devices continue to operate and provide protection, without any remote
intervention.

Data is continuously processed by devices attached to sensors, in order to achieve a fast
local response in case of emergency. They can take measures automatically if programmed to do
so or the network is down, or they can forward the information and receive commands in order to
provide an efficient overall reaction. During emergency, the intervention teams are announced
and supplied with the exact location of the source of pollution, so they could fix the problem and
put back the water distribution in normal state.

The system can be easily extended as the distribution network grows or the security
requirements increase. The sensor number and placement is decided by the pipe infrastructure
topology and the degree of safety the water company is planning to offer. In this context, Pi-
CoPS provides assistance through a management application in projecting and testing device
placements, and also monitor the real-time information received from the sensors.

2

Pipe Contamination Prevention System

2 System Overview

2.1 Pi‐CoPS at a Glance
Pi-CoPS is designed to integrate with

the existing water distribution infrastructure,
providing automatic intervention in case of
contamination, additional support for data
acquisition, processing, real-time
intervention, and data collection and storage
(see Figure 1).

The information acquired by the
sensors attached to the pipes is processed by
Sensor Monitoring and Automatic Real Time
Intervention devices (SMARTi). They
acquire the data, process it, and get prepared
to take measures in case of emergency by
closing water valves. If the network is down
or they were programmed to do so,
SMARTi-s will take all the measures
automatically. This is the case for most
situations that involve simple network
topologies. However, in a more complex situation, SMARTi-s can be programmed to take action
only after receiving explicit commands from the upper layer devices. Paragraph 3.1.3 describe in
detail the high level issues involved in the decision process.

The data acquired by SMARTi-s is forwarded to Network Linking Devices (NetLiDs). A
NetLiD collects data from multiple SMARTi-s in one area (up to 255), and forwards it to the
eBox II. The eBox can synthesize the information received from the entire network and takes
decisions regarding water flow control and sends them back to the SMARTi-s for execution. The
eBox stores relevant statistics in a SQL database hosted on a dedicated server, and provides all
the information requested by the management application and the public access ASP.NET web
site and web service.

Figure 1 System Overview

2.2 Commercial Feasibility and Potential Customers
There is a high demand in the field of environmental protection for more advanced

solutions to water quality preservation. Even in the most advanced cities of the world, pollution
and deteriorating, out-of-date plumbing are sometimes causing the water to become unhealthy to
drink. Giving just a few examples taken from an official study [2], one can enumerate Atlanta,
with a poor distribution system, Fresno which has no real water source protection, and some
others just from the United States.

Pi-CoPS offers a large scale solution guided by the principle that clean water should be a
certitude for everyone. Thus, The Pi-CoPS system targets implementation by large water
distribution companies that already maintain an extensive pipe infrastructure. Implementation
costs are proportional to the detection and intervention capabilities of the deployed system, and

3

Pipe Contamination Prevention System

should be viewed as a reasonable and necessary investment by any community interested in
bringing a high level of safety regarding the quality of its drinking water, whether it can be
jeopardized by accidents or malicious actions.

2.3 Innovative Approaches and System Features
Pi-CoPS’ objective is to eliminate the risk of contamination spreading in the water

distribution system of a city or any other community. This critical task is accomplished in an
original approach by providing automatic intervention in case pollutants are detected, even in
case of communication or hardware failure. The distributed system characteristics of the Pi-
CoPS network allow every device to continue functioning based on its current assignments and
fail-safe plan, even in case of communication line or higher-ranking device failure.

This feature is supported by Pi-CoPS along with other services and functions that permit
the water company to control almost every aspect of the system:

 Real-time monitoring of the water flowing through the pipes of the distribution system
by means of a large number of sensors placed in strategic locations.

 Reliable data acquisition and storage is possible by implementing a scalable and fault
tolerant data network featuring intelligent hubs (of which the most capable are
implemented with eBoxes), a storage server, and remote administration and monitoring
points, where engineers can examine in detail various aspects of the entire system.

 Statistics and on-demand real-time information from sensors are carried out by the
front-end services located on the servers: a web application that offers basic statistical
and real time information over the Internet, and a specialized desktop application that,
apart from providing advanced monitoring and visualization, is helping the water
company engineers to efficiently design and implement the Pi-CoPS sensor network over
the existing water pipes infrastructure.

2.4 Design Methodologies and Team Collaboration
A spiral methodology was used for our system development, as it benefited from its rapid

prototyping, and parallelism in design and build activities. In the initial phase, the project
requirements were established and the main components of the system were delimited. After an
initial functional prototype was obtained, the development life-cycle of each component
consisted of series of design adjustment, implementation and testing in the new conditions.
During every iteration, new functionality and more testing was added to the Pi-CoPS system.

The team kept connected through an on-line collaborative document editing application
(Wiki). All document drafts were edited there and all ideas and options were discussed. All
specifications for system components, interfaces and protocols are also stored there. A
SubVersion source control system is used to share and edit the source code for all software
modules. A Gantt chart was used to schedule and synchronize each task and delimit the work
each member had to carry out. In addition, weekly meetings took place in order to evaluate the
progress of each member.

4

Pipe Contamination Prevention System

3 Implementation and Engineering Considerations

3.1 System Architecture

Figure 2 System Architecture

The next sections detail the design and functionality of each component in the system.
The diagram depicted in Figure 2 presents an overview of the way each component interacts with
the others.

Pi-CoPS is mainly a distributed system, as its processing power and decision-taking
responsibility is spread across all of its devices, so that it is not a single-point-of-failure structure.
It has however a clear hierarchical structure that tends to concentrate around a central node. Data
flow towards this node is not possible when the network is down, but the critical task of
protecting the public by shutting down the water flow in case of pollution is not affected in a
significant way.

5

Pipe Contamination Prevention System

3.1.1 Sensor Monitoring and Automatic Real Time Intervention devices
(SMARTi‐s)

SMARTi-s are the base of the
hierarchy, being the simplest and the most
numerous modules. They perform three basic
operations:

 Monitoring water quality using
sensors

 Communicating the sensor readings
to upper-level devices (NetLiD-s)

 Driving devices that alter the water
flow: valves, automated taps

Figure 3 depicts a simplified diagram
of the general SMARTi workflow process.
Communication with the upper layer is made
through a serial line, over which SMARTi-s
receive commands and responds with data or
status. (Block 1) During a SMARTi
configuration process, every sensor is
assigned a range of readings that correspond
to accepted water parameters. When the
sensor readings are sampled, the SMARTi
analyses the results and determines whether
the water parameters fit the accepted range of
readings. (Block 2) If not, an emergency
situation is reached.

There are two actions that are being
taken when the SMARTi is in an emergency
situation: (Block 3)

 Automatic Response (Block 4) is the
preprogrammed action to be taken
when an emergency situation occurs,
and is not situation-specific but
general. When an emergency occurs
the most important fact is to keep

consumers safe, therefore over-reacting is normally better than not reacting at all. It
should be noted that this action is a preprogrammed response that occurs a few
milliseconds after the detection of the pollutants, and will be suppressed in at most 4
seconds by a situation and topology specific command issued by the eBox.

Figure 3 SMARTi Workflow Diagram

 Upper layer command issued by the eBox after applying the water routing algorithm to
the situation in the field.

6

Pipe Contamination Prevention System

The sensors mounted on the water pipes are chosen according to the type of
contaminants that need to be supervised. For the purpose of testing, some simple, easy to
manufacture sensors were considered.

The water flow speed sensor is a small encased rotating paddle wheel connected to a
magnet. It outputs electrical pulses with a rate proportional to the speed of the water through the
pipe. The SMARTi has a special Counter input that can measure the frequency directly.

The conductivity sensor can detect many contaminants. Pure water is a very good
electrical insulator, but this is hardly the case in practice. Whenever excess salts are present in
the water, its conductivity rises and that is be easily detected with a sensor made from two inert
electrodes and an amplifier.

The transparency sensor only detects severe pollution but is nevertheless useful,
especially as a demonstrator. It is also very simple as it only consists of a light emitter and a light
detector enclosed in a black box.

The laser sensor also uses light, but it measures how much it scatters rather than how
much of it is absorbed. It’s much more sensitive and complex. It is only partly complete due to
unavailability of some components.

3.1.2 Network Linking Devices (NetLiD‐s)
NetLiD-s collect data from SMARTi-s and process it statistically. All SMARTi-s are

polled once every second. After being processed, data from the SMARTi-s is sent to the higher
level once every minute in case no pollution is detected.

NetLiD-s also keep a map of the pipes in the area they service. When one or more
SMARTi-s detect pollution, the NetLiD will possibly override decisions taken by the SMARTi-s
in an attempt to offer increased protection or provide an alternate supply route for clean water.

A company employee can request a real-time view of the readings on a sensor. Since
sending all data from all sensors managed by NetLiD-s would quickly overload the network, an
elegant solution was employed: on request, the NetLiD can forward data as it receives it from
specific SMARTi-s once a second.

3.1.3 The eBox II
The main processing unit of the Pi-CoPS system is represented by the eBox. The eBox

runs a custom built Microsoft Windows CE image. They provide the second level of data
processing and decision taking, as well as the primary level on which communication with the
central servers occurs.

The operating system image was customized in order to get the smallest footprint and
preserve the computing power to the tasks related to the functioning of the Pi-CoPS system. The
image was built from scratch, and included support for wired internet connectivity, .NET
Compact Framework 2.0, remote application installation, various network tracking utilities as
well as the custom management solution.

The functions of the eBox are as follows:

7

Pipe Contamination Prevention System

 During normal operation (no special events – i.e. no pollution occurred) it packs and send
synthetic data to the Global Storage Server (see section 3.1.4) over a custom designed
Web Service.

 In case a contamination occurs and is reported to the eBox, it takes measures to limit
and/or reroute pollution to the evacuation system, by examining the distribution and Pi-
Cops network topology. After issuing the necessary commands to the SMARTi-s, it also
monitors the evolution of the sent commands and alerts the central server if malfunction
is detected (device timeouts, actuators unresponsiveness, etc.)

Water Routing
In case pollution is detected, the network map is examined and the shortest path to a

“sink point” is determined. A sink point can be a point where water naturally leaves the
distribution system or a (large) consumer where water quality is rather unimportant (i.e. a
thermal point).This path is determined by taking into consideration the length of the pipes the
polluted water passes through and the number of ramifications that pipes have (a longer path but
with fewer ramifications is preferred – as fewer valves need to be closed). On the other hand, the
algorithm can take into consideration the option of totally isolating the polluted area if the
distance to any sink point is too big (the specific distance can be set when initially deploying the
system). This is tuned on the initial setup of the system.

In this latter case, commands for routing the polluted water to a specific point can still be
issued centrally, from an administrator, and the system will carry out the commands. Also, based
on readings from the sensors the eBox determines the location of the pollution source. The
accuracy of the location is strictly related to the number and the precision of the sensors on the
considered network segment.

The Necessity of the eBox
The eBox has been chosen to be used instead of a PC or a more lightweight device due to

the following reasons:

 The eBox was designed to operate under industrial conditions (a wide temperature range:
-20°C … +60 °C, and very permissive humidity conditions) and is less susceptible to
hardware failure than a PC, which has more components in its structure.

 By optimizing data transfers (reporting only the information that is actually necessary)
the eBox can easily handle a network of 256 fully-loaded NetLiD-s at a rate of one
pollution event per second. We also simulated larger events that were “detected” by a
significant number of virtual sensors.

 Its dimensions make it suitable for being placed in inaccessible spots (on telegraph posts,
or underground, etc.).

 An authorized engineer could directly connect to it and carry out configurations through a
friendly user interface.

The eBox was thus found to be ideally suited to function as the manager of the whole
PiCoPS network.

8

Pipe Contamination Prevention System

3.1.4 Global Storage Server
The data collected through the sensors infrastructure and processed by the NetLiD-s and

the eBox is stored in a central data base server (which should be typically a dedicated machine)
running SQL Server 2005.

Figure 4 Position of the Global Storage Server in the System

This server is used as the main data source for both the network-pertinent data
(distribution network topology and sensors types and locations), and network acquired data
(sensors readings, system events). Although they belong logically to the same database, these
two levels can be physically separated at the DBA level, in order to provide safety for sensitive
data and increased performance for highly accessed tables.

This database is accessed by both the internal Pi-CoPS network and the company’s
administrative staff and customers through ASP.NET web services which provide the means of
transparently authenticating the users and exchanging data.

Figure 5 General Database Structure

9

Pipe Contamination Prevention System

During normal operation, data is regularly uploaded to the server and stored in the
DeviceReadings table. The update interval is chosen so that relevant data is correctly stored and
that no overflow occurs (this is typically 1 minute). For each reading the unique identifier of the
source is stored, as well as the minimum, maximum and average values read in that given time
span. In case a special event occurs (contamination detected, unresponsive device) records are
inserted in the SystemEvents table, that track the evolution of that special event (event reported,
actions taken, progress of actions, further sent alerts).

3.1.5 Desktop Front‐end
The desktop front-end is represented by a rich Windows Forms management application

that provides to the administration the necessary tools required to control every aspect of the Pi-
CoPS system:

 A systematic view of the device hierarchy, either as a tree view, or as a customizable
graph. The administrator can visually organize the sensor representations on the
workspace, view and edit their settings, and see the current status reported by each
sensor. The application keeps in touch with the entire physical hierarchy by the means of
the eBox which intermediates all the communications.

 A real time plot of the sensor measured parameters, and statistical plots with previous
values stored in the database. These visualizations are used by the engineers to discover
flaws in the water distribution infrastructure, patterns in water quality parameters, or any
other useful statistics.

 A three dimensional representation of the city-wide piping infrastructure correlates the
sensor hierarchy with the actual physical placement of the sensors and the linking
devices. By using the powerful capabilities of Microsoft Direct3D, the entire city map is
displayed, and the pipes are displayed as a graph above the map. The sensor hierarchy
detected through the eBox can be placed over the piping map, thus the management
application can offer support for further sensor placement or pointing the exact failure
points.

 Simulation of various sensor placements and potential flaws can be done by inserting
emulated devices into the real sensor hierarchy. They act as real devices and can provide
valuable information regarding a future Pi-CoPS network expansion.

The Figure 6 depicts the management application main window. The distribution view
shows a simple water network implemented over a portion of the Bucharest map. Each device
has its corresponding symbol and a small overlay that indicates its status. Each selected device
can be identified in the network tree structure (on the left), and its properties displayed on the
right. The graph below the distribution view illustrates real-time water parameters taken from
the last selected sensor. Various operations can be performed directly with the contextual menus
of the figured elements, or by accessing the menus and toolbars.

10

Pipe Contamination Prevention System

Figure 6 Management Application Main Window

3.1.6 Web Application Server
The web server runs ASP.NET 2.0 and hosts both the web services used for accessing the

database (no direct connection exist between the “outer world” and the database sever in order to
provide security for sensitive data) and the web application used to present in a filtered manner
information pertaining network status and water quality statistics.

The web services are developed on top of the ASP.NET architecture using WSE 3.0
(Web Service Enhancements 3.0) to provide increased security (for communication between
devices or other clients and the database server) and optimized transfer for binary files (the
communication between the desktop front-end and the database). By using certificate based
authentication users are given differentiated information in a secure way (i.e. company’s
customers or regular users can access far less and detailed information than the system
administrator).

The web service used by the eBox in the network implemented a simpler authentication
mechanism, as the API for WSE is not supported on the current version on .NET Compact
Framework, nor by other third party libraries (as OpenNETCF). Instead, a custom made
Challenge-Response authentication protocol is used, as short response times and high device
responsiveness are essential.

11

Pipe Contamination Prevention System

3.2 Hardware Design and Implementation

3.2.1 Communication Media and Protocols
The Central Hub manages the Pi-CoPS network by means of an Ethernet connection.

Each NetLiD also has an Ethernet interface and is assigned an IP address. The NetLiDs can be
part of a city-wide LAN or can connect directly to the Internet. Pi-CoPS can thus use the existing
Internet infrastructure within a city, to facilitate installation, or it can use a separate network
which would be more secure and possibly more reliable.

Ethernet was chosen because it is a proven technology, and it can support large networks
or give easy access to the Internet. Although Internet connectivity can sometimes fail, and a
minimum latency cannot be guaranteed, the system is designed to tolerate that. Communication
takes place over TCP, which increases the connection reliability.

Communication between a NetLiD and its SMARTi-s does place a maximum limit on
response time. Even if very fast communication is not required, a deterministic access scheme is
mandatory and a higher degree of reliability is needed. SMARTi-s are connected to a NetLiD on
a 485 half-duplex serial bus [8]. Many alternatives exist to the 485 bus, such as CAN and 1-
Wire(r). The industry-standard 485 was chosen because of its overall simplicity as well as
flexibility.

The NetLiD acts as a bus master and polls the SMARTi-s regularly. SMARTi-s only
respond to commands given by the NetLiD to their unique address. In case a pollution event
arises, the NetLiD may also send commands to SMARTi-s. A small amount of data, some 5 to
30 bytes, is contained in each packet. Packets that the SMARTi sends contain sensor
measurements, alarm flags and valve state. The NetLiD may command the opening or closing or
certain valves. The protocol also provides error detection and packet retransmission with an
ACK/NAK mechanism. By keeping the packets small, it is possible to use a modest speed of
115kb/s for the serial bus, which permits the use of long (1km) cables.

Figure 7 SMARTi Block Diagram Figure 8 SMARTi Initial Prototype

12

Pipe Contamination Prevention System

3.2.2 SMARTi
The SMARTi is built around an ATmega8535 microcontroller [6]. Because the chip

integrates most of the necessary resources, a solution with a very low component count could be
designed, resulting in increased reliability. The SMARTi does need to be the most reliable
component in the Pi-CoPS architecture, because its failure renders a segment of the water
network unprotected.

3.2.3 NetLiD

Figure 9 The PCB Layout and the Initial Prototype of the NetLiD

The NetLiD is powered by an
ATmega128 microcontroller [7] running at
16 MIPS. A 64KB RAM was installed on
the prototype (for development purposes, the
maximum non-segmented amount was
used). The NetLiD connects to a LAN or to
the Internet by means of an ENC28J60
Ethernet controller. A PCB layout of the
NetLiD is depicted in Figure 9, with the
main components indicated. The NetLiD
prototype board was built manually and its
layout differs slightly from the final version,
which will be professionally manufactured.

Selection of the CPU for the
SMARTi was based on several criteria, the
most important being processing speed,
hardware architecture, instruction set and
ease of integration. A microcontroller was preferred because it integrates several resources such
as UARTs, timers and memory. This simplifies the board design and increases reliability. The

Figure 10 NetLiD Block Diagram

13

Pipe Contamination Prevention System

necessary performance of the CPU was estimated and several candidates were then analyzed. An
enhanced 8051 architecture with integrated Ethernet MAC was a significant candidate, but it was
harder to set up and needed more external chips, some of them hard to source. The current CPU
can be replaced by a newer, pin-compatible variant that would eliminate the need for an external
SRAM chip.

The 485 interface on the NetLiD allows 4 bus segments to be logically connected, but
electrically isolated. This improves electrical load balancing and assures that, in case a segment
fails (either short- or open-circuit), the rest remain functional. The bus cables also contain,
besides the 485 twisted pair, an additional pair for distributing power to SMARTi-s in a fashion
similar to Power over Ethernet.

3.3 Software Design and Implementation

3.3.1 eBox II Application
The eBox application is a .NET Compact Framework 2.0 application. It features a

Windows Forms module used for in-place observation of network status and a resident module.
The resident module processes data from the NetLiD-s and further relays it to the Database
Server and also provides map analysis and decision taking in case an event is detected.

The application is built into the operating system image and it’s set as a default start-up
component in order to ensure minimal down time in case of power failure. In this respect, the
only module of the application that loads by default is the Ethernet listener and the web service
client. In case an on-field operator needs to have an overview of the network status he can
connect an external display to the eBox and manually start the network status monitoring tool.

3.3.2 Pi‐CoPS Management Application
The management application is a Windows Forms application, written in C# for .NET

Framework 2.0. It also uses the Managed DirectX 2.0 Beta shipped with DirectX SDK (February
2006).

The Application Document
The application is basically designed as a Single Document Interface, where a document

represents the city infrastructure, sensor and upper layer device placements, and any other
custom application settings saved by the user. In a normal circumstance, only one document
would be saved on the workstation, that is, the one that represents the city whose company
implemented Pi-CoPS.

The document is an XML file that contains the serialization of every aspect of the
application, with the exception of the city infrastructure (3D map and piping graph) which is held
in the global storage server, along with the sensor readings.

Application Modules
The implementation has been divided in 5 .NET assemblies:

14

Pipe Contamination Prevention System

Figure 11 The Sensor Network Representation Class Hierarchy

 SensNet – contains the classes that encapsulate the sensor network hierarchy (see Figure
11), along with various helper classes and structures (not figured). Some class names
differ from those of the network device they model, as the class hierarchy was designed
in an earlier stage. An abstract, SystemDevice class was defined to ensure the
common functionality of all its descendents and it includes, along with general status
properties, support for external synchronization (connectivity with the eBox or with a
virtual device, for simulation purposes), and a property interface for runtime visualization
and editing in a PropertyGrid control. Its descendents provide explicit
implementations and various instantiation means. The SensorNetwork class is the
logical root of the class instances hierarchy, provides access through iterators at any level
of the network and notifies through events when a change in the network occurs.

 DistNet – contains the classes that represent a pipe infrastructure. It is represented as an
oriented graph, with Junctions as nodes and Pipes as arcs. There are special nodes
that represent the water sources (tanks or pumps) and the consumers (the buildings). The
orientation of the arcs is given by the water flow. Each Pipe object contains a collection
of SystemDevice objects that represent the sensors and valves installed on the
physical pipe. If a water flow sensor is attached on each pipe of a junction, the
application can verify the flow conservation on that junction and thus identify any
possible water leaks.

 DXControls – represent a collection of controls, most of them using the Direct3D
rendering capabilities. Each Direct3D control is based on a basic DXControl that
provides Direct3D engine initialization and a generic rendering pipeline. There are two
descendents of this control: DistributionView which displays the spatial view of
the city map and distribution network, and DeviceView that allows the user to see the
device tree as a graph. There is also a DeviceTree control, derived from the common
control TreeView, and a DataMonitor control for monitoring the sensor parameters.

 GraphRes – provides a consistent access to the graphical resources that the application
uses directly. They consist mainly of device icons, at various states and resolutions.

15

Pipe Contamination Prevention System

 MainApplication – contains the user interface and the main application logic. It
instantiates the specialized controls, loads all the necessary data and maintains the
interactions between all the controls.

3.4 Custom Tools

3.4.1 SMARTi and Sensor Emulator
This PC software allows a high number of virtual SMARTi-s to be connected to a real

NetLiD in order to test its proper functioning under full load. It was vital during the development
stages in the testing and debugging of NetLiD software, and will continue to be a useful tool as
the software is being refined.

The Emulator allows one to modify the reported parameters in real time, simulating a
contamination event, or can generate random events at specified intervals.

3.4.2 NetLiD Emulator
In a fashion similar to the SMARTi Emulator, the NetLiD Emulator aids in the

development of the eBox software. The main difference is that it communicates with the eBox
via an Ethernet port and exchanges a larger quantity of data. In the real system, each NetLiD
would have its own IP address, but the eBox can accept connections coming from the same IP
address, allowing emulation of a very large number of NetLiDs on a single PC.

The NetLiD Emulator reads a map of a virtual water network and a file specifying which
NetLiDs defined in the map to actually emulate. Functioning is then similar to that of the
SMARTi Emulator.

3.4.3 The Mipmap Builder

Figure 12 The Mipmap Builder and a View of The Generated Surface

16

Pipe Contamination Prevention System

The Mipmap Builder is a Windows Forms application that helps with the creation of the
bitmap image components (mipmaps) that compose the 3D surface of the city land displayed in
the Distribution View of the management application.

Due to the fact that a city map is very large and it would require a large amount of
memory to completely load and display it, the Mipmap Builder breaks apart the original image
into a large number of pieces, then it joins adjacent pieces in order to form images of a lower
detail, and create a representation of the original image at a larger scale, and the process is
recursively applied until a single mipmap of the original image remains.

3.4.4 485‐PC Interface
Interaction between virtual SCIMs and a real SCH requires an interface between the PC

running the emulator and the 485 bus on the SCH. It is realized with the SCIM prototype, which
already has a 485 port needed for normal operation. Different software was programmed into the
SCIM prototype that allows it to connect to the PC Parallel Port and relay data.

3.4.5 Microcontroller Programming and
Debugging
A simple adapter was created to write

microcontroller memories using a Parallel Port.

Software running on the microcontrollers
(NetLiD and SMARTi) sends debugging information
via a serial port if instructed to do so, which is
displayed on the PC using an application such as
HyperTerminal. An adapter was assembled to link the
microcontroller serial port and the PC serial port
through a level converter.

3.5 Verification and Testing
The main part of the testing setup is depicted

in Figure 13. It consists of a scaled-down water pipe
on which a conductivity sensor and a valve are
attached. They are also connected to a SMARTi which
communicates with a NetLiD. The NetLiD is
connected to an Ethernet switch (not shown), linking it
to the eBox and a PC.

The SMARTi was tested and confirmed to
respond instantaneously to pollution, with and without
its link to the NetLiD.

The NetLiD was tested under full load using an
array of 255 emulated SMARTi devices. Network load
(for the serial link) was 66% under normal conditions
(monitoring only). The NetLiD was instructed to send
override commands to all the SMARTi devices. Figure 13 Pi-CoPS Testing Prototype

17

Pipe Contamination Prevention System

Network load was 89% (highest possible load). This assures a 10% margin for packet
retransmission in case of data errors. Pollution detection was simulated on some of the SMARTi
devices, in varying percentages. The NetLiD responded correctly. Maximum response time was
3 seconds.

For the last test, the NetLiD and the eBox were connected to the Internet from two
locations. Maximum round-trip response time (SMARTi-NetLiD-eBox and back) was under 4
seconds.

18

Pipe Contamination Prevention System

4 Summary

4.1 Project Current Status
A prototype implementation has been built and it is fully functional. Each component of

the system has been tested and found to be conforming to its specified functionality under a large
range of external conditions. By benefiting the rapid application development facilities offered
by .NET Framework 2.0 and Visual Studio 2005, we were able to develop in short time the set
of complex applications that automate many deployment, diagnostics and maintenance tasks.

Due to its nature, the system as a whole could only be physically tested on a small scale.
This proved all modules function correctly. Additionally, we used the emulators to generate a
large virtual sensor network and verify the performance of the eBox II system and the
management application.

Currently, discussions with the local water distribution authority are carried out, in order
to get access to a portion of a real water distribution network and test the Pi-CoPS system under
the real life conditions.

4.2 Further Improvements
The Pi-CoPS system has been implemented with all the planned functionality; in addition

it can be improved with some add-ons. Wireless access could be realized for devices that need to
be placed in remote locations, where a cabling infrastructure would be difficult to execute.

Moreover, new sensors can be tested and interfaced to be included in the sensor array, as
new pollutants are suspected to be able to infiltrate in the distribution piping. However, the 255
SMARTi limit on each NetLiD is expected to be sufficient for the following decade.

4.3 Conclusion
Pi-CoPS addresses the high demand in the field of environmental protection for more

advanced solutions to water quality preservation, as it brings a new approach to this vital
mission: a fail safe, responsive, and scalable water quality management system deployed over
the existing water supply infrastructure.

It provides to the distribution authority the complete solution for deploying, maintaining,
and extending a distributed network of sensors and smart devices. If placed strategically and in
sufficient number, they can assure a high degree of protection against virtually any type of
detectable pollutant. They would also provide complementary assistance to the already existing
filtering systems that implement water treatment and chemical analyses.

In addition, the system offers services for data collection and storage, powerful
monitoring capabilities and public access for general information. In this context, the eBox II
running the Windows CE 5.0 platform played a centralization role in the system, as it confirmed
to be a stable and fast-response device.

By addressing the problem of water, the very essence of life, our system greatly impacts
human life in a large variety of communities by providing the means of assuring a high standard
of public safety.

19

Pipe Contamination Prevention System

5 References
Web References

[1] Our Most Precious Resource, Wasted
http://www.dustpro.com/DustParticles.htm

[2] NRDC Study Finds Safety of Drinking Water in U.S. Cities at Risk
http://www.nrdc.org/water/drinking/uscities.asp

[3] Clean Water Act Status Report
http://www.scorecard.org/env-releases/water/cwa-us.tcl

[4] The EPA’s Pesticide-Protection Failure
http://www.nrdc.org/health/pesticides/olgpesticides.asp

[5] Wellness Goods – Don’t Drink the Water
http://www.wellnessgoods.com/dontdrink.asp

[6] Atmel ATmega8535 Microcontroller Datasheet
http://atmel.com/dyn/resources/prod_documents/doc2502.pdf

[7] Atmel ATmega128 Microcontroller Datasheet
http://atmel.com/dyn/resources/prod_documents/doc2467.pdf

[8] Texas Instruments, 422 and 485 Standards Overview and System Configurations
http://www-s.ti.com/sc/psheets/slla070c/slla070c.pdf

[9] Managed DirectX 9.0 Tutorials
http://www.thehazymind.com/

[10] MSDN Web Service Resources
http://msdn.microsoft.com/webservices/

[11] Mikehall’s Embedded WEblog
http://blogs.msdn.com/mikehall/

Books

[12] A. Santos Lobao, E. Hatton, NET Game Programming with DirectX 9.0 – Apress,
2003

[13] Steve McConnell, Code Compete, 2nd Edition – Microsoft Press, 2004

[14] Gavin Powell, Beginning Database Design – Wrox Press, 2005

[15] Chris Hart, Beginning ASP.NET 2.0 – Wrox Press, 2005

[16] Dhananjay Gadre, Programming and Customizing the AVR Microcontroller –
McGraw Hill, 2000

20

http://www.dustpro.com/DustParticles.htm
http://www.nrdc.org/water/drinking/uscities.asp
http://www.scorecard.org/env-releases/water/cwa-us.tcl
http://www.nrdc.org/health/pesticides/olgpesticides.asp
http://www.wellnessgoods.com/dontdrink.asp
http://atmel.com/dyn/resources/prod_documents/doc2502.pdf
http://atmel.com/dyn/resources/prod_documents/doc2467.pdf
http://www-s.ti.com/sc/psheets/slla070c/slla070c.pdf
http://www.thehazymind.com/
http://msdn.microsoft.com/webservices/
http://blogs.msdn.com/mikehall/

	1 Abstract
	2 System Overview
	Pi-CoPS at a Glance
	2.2 Commercial Feasibility and Potential Customers
	2.3 Innovative Approaches and System Features
	2.4 Design Methodologies and Team Collaboration

	3 Implementation and Engineering Considerations
	3.1 System Architecture
	3.1.1 Sensor Monitoring and Automatic Real Time Intervention devices (SMARTi-s)
	3.1.2 Network Linking Devices (NetLiD-s)
	3.1.3 The eBox II
	3.1.4 Global Storage Server
	3.1.5 Desktop Front-end
	3.1.6 Web Application Server

	3.2 Hardware Design and Implementation
	3.2.1 Communication Media and Protocols
	3.2.2 SMARTi
	3.2.3 NetLiD

	3.3 Software Design and Implementation
	3.3.1 eBox II Application
	3.3.2 Pi-CoPS Management Application

	3.4 Custom Tools
	3.4.1 SMARTi and Sensor Emulator
	3.4.2 NetLiD Emulator
	3.4.3 The Mipmap Builder
	3.4.4 485-PC Interface
	Microcontroller Programming and Debugging

	3.5 Verification and Testing

	4 Summary
	4.1 Project Current Status
	4.2 Further Improvements
	4.3 Conclusion

	5 References

